CHEMISTRY STUDY MATERIALS FOR CLASS 9 (NCERT based Revision of Atoms and molecules) GANESH KUMAR DATE:- 13/07/2020

NUMERICAL PROBLEMS BASED ON MOLE CONCEPT

Question1. Calculate the mass of 6.022×10^{23} molecule of Calcium carbonate (CaCO₃). Solution1. Molar mass (Molecular mass in gram) of CaCO₃ = 40+12+3×16 = 100 g No. of moles of CaCO3 = No. of molecules/Avogadro constant = $6.022 \times 10^{23}/ 6.022 \times 10^{23}$ = 1 mole Mass of CaCO₃ = No. of moles × molar mass = 1×100 g = **100** g.

Question 2. Calculate the mass of 12.044×10^{23} carbon atoms.

Solution2. No. of moles of Carbon atoms = No. of atoms/Avogadro constant

 $= 12.044 \times 10^{23}/6.022 \times 10^{23}$ = 2 moleMass of carbon atoms= No. of moles x atomic mass $= 2 \times 12$ = 24 g.

Question3. Calculate the number of oxygen atoms in 1 mole of O_2 .

Solution3. 1 molecule of $O_2 = 2$ oxygen atoms So, 1 mole of $O_2 = 2$ mole oxygen atoms $= 2 \times 6.022 \times 10^{23}$ $= 12.044 \times 10^{23}$ oxygen atoms.

Question4. Calculate the number of Cu atoms in 0.635g of Cu.

Solution4. No. of moles of Cu = Mass of Cu/Atomic mass

= 0.635/63.5 =0.01 mole No. of Cu atoms = No. of moles × Avogadro constant = $0.01 \times 6.022 \times 10^{23}$ = 6.022×10^{23} Cu atoms.

Question5. Calculate the number of molecules in 11.2 liters of SO₂ gas at NTP.

Solution5. 1 mole of $SO_2 = 22.4 \text{ L} (at \text{ NTP})$ => 11.4 L of $SO_2 = 0.5 \text{ mole } SO_2$ = $0.5 \times 6.022 \times 10^{23}$

 $= 3.011 \times 10^{23} \text{ SO}_2 \text{ molecules}.$

Question6. An atom of some element X weighs 6.644×10^{-23} g. Calculate the number of gram-atoms in 40 kg of it.

Solution6. Mass of 1 mole X atoms = mass of 1 atom × Avogadro constant

$$= 6.644 \times 10^{-23} \times 6.022 \times 10^{23}$$

= 40 g

So, the atomic mass of X = 40

No. of gram-atoms (or moles) of X = mass of X / atomic mass

 $= 40 \times 1000/40$

= 1000.

Question7. An atom of some element X weighs 6.644×10^{-23} g. Calculate the number of gram-atoms in 40 kg of it.

Solution7. Molecular mass of $CO_2 = 12 + 2 \times 16 = 44$

Total no. of moles in 200mg CO₂ = Mass of CO₂/Molecular mass = 200×10^{-3} g/44 = 0.00454

No. of moles removed = $10^{21}/6.022 \times 10^{23}$

= 0.00166

No. of moles of CO_2 left = 0.00454 - 0.00166

= **0.00288**.

Question8. Calculate the volume occupied by 1 mole atom of

(i) Monoatomic gas, and (ii) Diatomic gas at NTP.

Solution8. 1 mole atom of monoatomic gas occupies 22.4 L at NTP, and 1 mole of diatomic gas (contains 2 atoms) occupies 11.4 L at NTP.

Question 9. Calculate the volume of $20g H_2$ at NTP.

Solution 9. No. of moles of $H_2 = 20/2 = 10$

```
Volume of any ideal gas at NTP = No. of moles × 22.4 L
```

 $= 10 \times 22.4$

= **224 L**.

Question10. What is the volume occupied by 6.022×10²³molecules of any gas at NTP?

Solution10. 6.022 \times 10²³ molecules = 1 mole molecules, and

1 mole molecules of any ideal gas occupies 22.4 L at NTP.

Question11. Calculate the number of atoms in 5.6 liters of a

(i) Monoatomic, and (ii) diatomic gas at NTP.

Solution11. No. of moles in 5.6 L gas at NTP = 5.6/22.4 = 0.25

No. of molecules in 5.6 L gas = $0.25 \times 6.022 \times 10^{23}$ = 1.5×10^{23} molecules

(i) In monoatomic gases, No. of atoms = No. of molecules

(ii)In diatomic gases, No. of atoms = $2 \times No.$ of molecules

$$= 2 \times 1.5 \times 10^{23}$$
$$= 3.0 \times 10^{23}.$$

 $= 1.5 \times 10^{23}$
